Discrete Morse Theory and the Homotopy Type of Clique Graphs

نویسندگان

  • F. LARRIÓN
  • M. A. PIZAÑA
  • R. VILLARROEL - FLORES
چکیده

We attach topological concepts to a simple graph by means of the simplicial complex of its complete subgraphs. Using Forman’s discrete Morse theory we show that the strong product of two graphs is homotopic to the topological product of the spaces of their complexes. As a consequence, we enlarge the class of clique divergent graphs known to be homotopy equivalent to all its iterated clique graphs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equivariant discrete Morse theory

In this paper, we study Forman's discrete Morse theory in the case where a group acts on the underlying complex. We generalize the notion of a Morse matching, and obtain a theory that can be used to simplify the description of the G-homotopy type of a simplicial complex. As an application, we determine the C2 × Sn−2-homotopy type of the complex of non-connected graphs on n nodes.

متن کامل

Equivariant collapses and the homotopy type of iterated clique graphs

The clique graph K(G) of a simple graph G is the intersection graph of its maximal complete subgraphs, and we define iterated clique graphs by K(G) = G, K(G) = K(K(G)). We say that two graphs are homotopy equivalent if their simplicial complexes of complete subgraphs are so. From known results it can be easily inferred that Kn(G) is homotopy equivalent to G for every n if G belongs to the class...

متن کامل

On the topology of simplicial complexes related to 3-connected and Hamiltonian graphs

Using techniques from Robin Forman’s discrete Morse theory, we obtain information about the homology and homotopy type of some graph complexes. Specifically, we prove that the simplicial complex ∆n of not 3-connected graphs on n vertices is homotopy equivalent to a wedge of (n − 3) · (n − 2)!/2 spheres of dimension 2n − 4, thereby verifying a conjecture by Babson, Björner, Linusson, Shareshian,...

متن کامل

The clique operator on matching and chessboard graphs

Given positive integers m, n, we consider the graphs Gn and Gm,n whose simplicial complexes of complete subgraphs are the well-known matching complex Mn and chessboard complex Mm,n. Those are the matching and chessboard graphs. We determine which matching and chessboard graphs are clique-Helly. If the parameters are small enough, we show that these graphs (even if not clique-Helly) are homotopy...

متن کامل

Discrete Morse theory and the consecutive pattern poset

We use discrete Morse theory to provide another proof of Bernini, Ferrari, and Steingrímsson’s formula for the Möbius function of the consecutive pattern poset. In addition, we are able to determine the homotopy type of this poset. Earlier, Björner determined the Möbius function and homotopy type of factor order and the results are remarkably similar to those in the pattern case. In his thesis,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012